A few things

twitter: @JosephErnest
email: here

Articles about:
#music
#photo
#programming

Don't read #tech articles except you really want to.

Some of my projects:
BigPicture
Jeux d'orgues
SamplerBox
Ojourdui

Somme d'exponentielles concernant la fonction de Möbius

Au cours de mon Master 2, en 2007, j'ai eu l'occasion de considérer une somme d'exponentielles concernant la fonction de Möbius:

$$S(x, \theta) = \sum_{n \leq x} \mu(n) e^{2 i \pi n \theta}.$$

En suivant Maier et Sankaranarayanan, il s'agissait de comparer plusieurs preuves du résultat suivant.

Théorème. Soit $\theta$ un nombre irrationnel de type $1$. Alors pour tout $\varepsilon > 0$, on a $$S(x,\theta) \ll x^{4/5 + \varepsilon},$$

où le type d'un irrationnel $\theta$ est défini par

$$\eta = \sup \{\delta > 0 : \liminf_{q \rightarrow \infty} q^\delta \| q \theta \| = 0 \}.$$

et $\| x \|$ est la distance d'un réel $x$ au plus proche entier.

Le mémoire Sur une somme d'exponentielles concernant la fonction de Möbius contient la démonstration de ce théorème ainsi qu'un contenu (très) introductif aux caractères de Dirichlet, fonctions $L$.

Older articles